Emergence of new ALK mutations at relapse of neuroblastoma

Gudrun Schleiermacher MD PhD

Institut Curie, Paris
Background

- Cancer: frequent secondary progression, resistance to conventional chemotherapy: therapeutic challenge
- Selection for genetic alterations during treatment
- Subclonal driver mutations might play a role in tumor progression
- Presence of driver mutation-harboring subclones at diagnosis, which might expand at relapse, has been linked to adverse outcome in hematological malignancies (Landau et al, 2013)
- Different models of clonal evolution (Ding et al, 2011):
 - Dominant clone evolves into relapse clone
 - A minor clone carrying the vast majority of primary tumor mutations escapes and expands at relapse
Hallmark of neuroblastoma: clinical heterogeneity

Treatment of neuroblastoma:
- Observation only
- Surgery
- Chemotherapy

Chemotherapy
- High dose chemotherapy with autologous stem cell rescue
- Surgery
- Radiotherapy
- Immunotherapy
- Maintenance treatment

Improvement of EFS in NB (all stages) over the last decades
But: despite significant progress for lower stages, survival in stage 4 disease does still not exceed 40% (mortality linked to metastatic tumor progression)

Moroz et al, 2011
ALK TRK plays a role in NB oncogenesis

Germline Mutations of ALK in neuroblastoma families

- Activating ALK mutations in 8 – 10% of all NB at diagnosis (Mosse et al, Janoueix-Lerosey et al, Chen et al, George et al 2008; De Brouwer et al, 2010)
- Objectives of this study: Determine the frequency of ALK mutations at relapse and their role in clonal evolution of NB
Methods

- 54 paired diagnosis – relapse NB tumor samples (France, Sweden, Belgium)
- 2 cell lines with corresponding tumor sample from which cell lines were established
- Sanger sequencing

- Deep sequencing (IonTorrent PGM®, LifeTechnologies) when an ALK mutation was seen in only one of the paired samples (7 cases)
 - Resequencing of hotspots exon 23 and exon 25
 - Depth of coverage: 100,000x
 - 4 control cell lines (CLB-Car, SKNDZ, SJNB12, SKNAS)
Heterogeneity of ALK mutations in NB

Ganglioneuroblastoma
Local progression,
Treatment by surgery

Michel Peuchmaur

Alk mutation R1275Q (CGA>CAA)

No Alk mutation
Results (Sanger sequencing): 14/54 Alk mutations

<table>
<thead>
<tr>
<th>Patient N°</th>
<th>Age at diag (months)</th>
<th>stage (INSS)</th>
<th>Interval diagnosis-relapse (months)</th>
<th>relapse type</th>
<th>FU (months from diagnosis)</th>
<th>Outcome</th>
<th>Genomic profile</th>
<th>ALK mutation</th>
<th>ALK Detection by Sanger</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBG03</td>
<td>50</td>
<td>4</td>
<td>23</td>
<td>loc</td>
<td>29</td>
<td>DOD</td>
<td>MNA</td>
<td>F1174L</td>
<td>pos</td>
</tr>
<tr>
<td>NBG14</td>
<td>90</td>
<td>4</td>
<td>10</td>
<td>loc</td>
<td>55+</td>
<td>NED</td>
<td>S</td>
<td>F1174L</td>
<td>pos</td>
</tr>
<tr>
<td>NBG21</td>
<td>41</td>
<td>2b</td>
<td>11</td>
<td>met</td>
<td>17</td>
<td>DOD</td>
<td>MNA</td>
<td>F1174L</td>
<td>pos</td>
</tr>
<tr>
<td>NBG0175</td>
<td>101</td>
<td>2b</td>
<td>93</td>
<td>loc + meta</td>
<td>150</td>
<td>DOD</td>
<td>S</td>
<td>Y1278S</td>
<td>pos</td>
</tr>
<tr>
<td>NBG0399</td>
<td>0.2</td>
<td>4s</td>
<td>6</td>
<td>meta</td>
<td>136</td>
<td>DOD</td>
<td>N</td>
<td>R1275Q</td>
<td>pos</td>
</tr>
<tr>
<td>NBG0824</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>meta</td>
<td>16</td>
<td>DOD</td>
<td>N</td>
<td>F1174L</td>
<td>pos</td>
</tr>
<tr>
<td>NBG1269</td>
<td>14</td>
<td>4</td>
<td>10</td>
<td>loc</td>
<td>11</td>
<td>DOD</td>
<td>S</td>
<td>L1196M</td>
<td>pos</td>
</tr>
<tr>
<td>NBG1224</td>
<td>24</td>
<td>2b</td>
<td>4</td>
<td>loc</td>
<td>14</td>
<td>NED</td>
<td>S</td>
<td>R1275Q</td>
<td>pos</td>
</tr>
<tr>
<td>NBG0073</td>
<td>3</td>
<td>4s</td>
<td>7</td>
<td>meta</td>
<td>272</td>
<td>NED</td>
<td>N</td>
<td>T1151R</td>
<td>pos</td>
</tr>
<tr>
<td>NBG05</td>
<td>37</td>
<td>4</td>
<td>45</td>
<td>loc + meta</td>
<td>50</td>
<td>DOD</td>
<td>MNA</td>
<td>R1275Q</td>
<td>neg</td>
</tr>
<tr>
<td>NBG12</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>meta</td>
<td>9</td>
<td>DOD</td>
<td>S</td>
<td>F1174S</td>
<td>neg</td>
</tr>
<tr>
<td>NBG17</td>
<td>29</td>
<td>4</td>
<td>13</td>
<td>meta</td>
<td>24</td>
<td>DOD</td>
<td>MNA</td>
<td>F1174L</td>
<td>neg</td>
</tr>
<tr>
<td>NBG1382</td>
<td>4</td>
<td>4</td>
<td>51</td>
<td>loc + meta</td>
<td>63</td>
<td>DOD</td>
<td>S</td>
<td>Y1278S</td>
<td>neg</td>
</tr>
<tr>
<td>NBG0308</td>
<td>3</td>
<td>2b</td>
<td>21</td>
<td>loc</td>
<td>93</td>
<td>NED</td>
<td>N</td>
<td>F1174L</td>
<td>neg</td>
</tr>
</tbody>
</table>

All pts with ALK mutations at diagnosis also had ALK mutations at relapse

5/54 new ALK mutations at relapse

Presented by: Gudrun Schleiermacher
Methods

• 54 paired diagnosis – relapse NB tumor samples
• 2 cell lines and tumor sample from which cell lines were established
• Sanger sequencing
• Deep sequencing (IonTorrent PGM®) when an ALK mutation was seen in only one of the paired samples (7 cases)
 • Resequencing of hotspots exon 23 (hotspot F1174) and exon 25 (hotspot R1275)
 • Depth of coverage: 100,000x
 • 4 control cell lines (CLB-Car, SKNDZ, SJNB12, SKNAS)
Analysis of noise (control cell lines):

Presented by: Gudrun Schleiermacher
PGM® analysis: cases with discordant Sanger results

<table>
<thead>
<tr>
<th>Chr position / patient n°</th>
<th># reads</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>chr2:29432655 (A) Y1278S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB1382_D</td>
<td>226371</td>
<td>99.954</td>
<td>0.011</td>
<td>1.00E+00</td>
<td>0.031</td>
</tr>
<tr>
<td>NB1382_R</td>
<td>179938</td>
<td>66.326</td>
<td>33.613</td>
<td><1E-016</td>
<td><1E-016</td>
</tr>
<tr>
<td>Controls (n=4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total of all reads</td>
<td>701987</td>
<td>99.941</td>
<td>NA</td>
<td>0.012</td>
<td>NA</td>
</tr>
<tr>
<td>Mean</td>
<td>99.942</td>
<td>2.49E-003</td>
<td>0.012</td>
<td>4.67E-003</td>
<td>0.043</td>
</tr>
<tr>
<td>chr2:29432664 (A) R1275Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB1224_D</td>
<td>258308</td>
<td>14.164</td>
<td><1E-016</td>
<td>0.064</td>
<td><1E-016</td>
</tr>
<tr>
<td>NB1224_R2</td>
<td>302176</td>
<td>0.035</td>
<td>1.00E+00</td>
<td>0.001</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>NB1224_R4</td>
<td>318313</td>
<td>0.053</td>
<td>1.00E+00</td>
<td>0.002</td>
<td>1.00E+00</td>
</tr>
<tr>
<td>NB1224_R5</td>
<td>302918</td>
<td>28.536</td>
<td><1E-016</td>
<td>0.121</td>
<td><1E-016</td>
</tr>
<tr>
<td>Controls (n=4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total of all reads</td>
<td>703934</td>
<td>0.038</td>
<td>NA</td>
<td>0.001</td>
<td>NA</td>
</tr>
<tr>
<td>Mean</td>
<td>0.032</td>
<td>2.49E-003</td>
<td>0.012</td>
<td>4.67E-003</td>
<td>99.921</td>
</tr>
</tbody>
</table>

Cases studied by PGM® in case of discrepancies of Sanger sequencing in different samples
- 5 patients: 13 samples
- 2 established cell lines: 4 samples

Analysis: comparison of base frequencies observed in a given sample, at a given position, to that observed in controls (Fisher exact test)

In some cases: no evidence of ALK mutated subclones

Presented by: Gudrun Schleiermacher
PGM® analysis: evidence of subclonal events

NBG17: Presence of an ALK mutated subclone (TTC> TTA; 0.798%) at diagnosis

NB0308: ALK mutation switch (TTC> TTA/TTG) leading to the same AA change at D and R
Results (NB cell lines)

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Age at diag (months)</th>
<th>stage (INSS)</th>
<th>Primary sample</th>
<th>Cell line established from</th>
<th>FU (months)</th>
<th>Outcome</th>
<th>Genomic profile</th>
<th>AA change</th>
<th>Primary sample</th>
<th>Cell line</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLB_Ma</td>
<td>9</td>
<td>4</td>
<td>Abdominal tumor</td>
<td>bone marrow</td>
<td>16</td>
<td>DOD</td>
<td>MNA</td>
<td>F1174L</td>
<td>neg</td>
<td>F1174L</td>
</tr>
<tr>
<td>CLB_Ba</td>
<td>27</td>
<td>4</td>
<td>bone marrow</td>
<td>bone marrow</td>
<td>117</td>
<td>NED</td>
<td>MNA</td>
<td>F1174L</td>
<td>neg</td>
<td>F1174L</td>
</tr>
</tbody>
</table>

Presence of an ALK mutated subclone (6.6%) in the Sample from which the cell line was established
Discussion

- **Sensitivity of the PGM® deep sequencing technique:**
 - Mean overall coverage (control cell lines): >175,000X
 - Errors in PGM:
 - vary strongly according to the genome structure: homopolymers;
 - possible link to sequencing errors due to polymerase slippage, errors in the chemistry
 - Mean overall background variability: 0.034%+/-0.035% for each base
 - Number of reads would be considered statistically different from the background (Bonferroni correction): a variation supported by 296 reads, or observed with a frequency of 0.17%, would result in a statistically significant difference from the controls (two-sided Fisher’s exact test)
 - **Sensitivity 0.17%** (100 fold that of Sanger sequencing, 20%)

- **Limits in sensitivity: quantity of analyzed material**
 - PCR of exon 23/25 amplicons: 50 ng of genomic DNA
 - ~5000 (diploid) cells
 - Limit of detection: 1/5000 cells; 1/10 000 haploid genomes
ALK in tumor progression

- In NB, *ALK* mutations might occur as subclones at diagnosis with secondary expansion
 - selective advantage during tumor progression
 - *ALK*-mutated and non-mutated cells might co-exist in an equilibrium
 - expansion of an *ALK*-mutated clone upon treatment: preferential cytotoxic effect on *ALK* non-mutated clones?

Clinical implications
Encourage new biopsy at relapse!

Search for subclones:
- Evaluation of frequency of *ALK* mutated subclones at diagnosis
- *ALK* targeted treatment for cases with subclonal *ALK* mutations?
 - further investigations in vitro and in vivo

When considering biomarker based *ALK* targeted therapy:
- Search for genetic alteration of *ALK*
Acknowledgements

Unité INSERM 830
Translational Research in Pediatric Oncology Team
Olivier Delattre
Julie Cappo
Angela Bellini
Isabelle Janoueix-Lerosey
Centre Léon Bérard, Lyon
Valérie Combaret

Unité de Génétique Somatique
Gaelle Pierron
Nathalie Clement
Eve Lapouble
Département de Pédiatrie
Jean Michon
Isabelle Aerts

Clinicians and pathologists of the SFCE
Michel Peuchmaur

Plateforme de Séquençage
Thomas Rio Frio
Quentin Leroy
Virginie Bénard
Leo Colmet Daage

Department of Medical Genetics,
Gothenburg, Sweden
Tommy Martinsson
Niloufar Javanmardi

Collaborators in Sweden:
Anna Djos
Ingrid Øra
Fredrik Hedborg*
Catarina Träger
Britt-Marie Holmqvist
Jonas Abrahamsson
Per Kogner

Ghent University
Frank Speleman
Bram de Wilde

Department of Medical Genetics,
Göteborgs Universitet,
Sahlgrenska Akademi

[Logos and graphics]